
1

American Economic Journal: Microeconomics 2009, 1:1, 1–16
http://www.aeaweb.org/articles.php?doi=10.1257/mic.1.1.1

Half a century ago, when decision theory and game theory were young, it was 
common to perceive a dichotomy between (a) games against nature, in which 

the “adversary” is a neutral “nature,”  and (b) strategic games, in which the adversary 
is an interested party or parties. Games against nature were analyzed using several 
criteria, most prominent being the maximization of subjective expected utility—i.e., 
expected utility when the probabilities assigned to nature’s moves are “subjective” or 
“personal,” as in Leonard J. Savage (1954);1 whereas strategic games were analyzed 
by minimax or, more generally, strategic equilibrium in the sense of John F. Nash 
(1951). No need was seen to reconcile or even relate the approaches, perceived as 
proceeding from distinct conceptual foundations.

In the ensuing years, the dichotomy gradually disappeared. It was recognized 
that games against nature and strategic games are in principle quite similar, and 
can—perhaps should—be treated similarly. Specifically, a player in a strategic game 
should be able to form subjective probabilities over the strategies of the other play-
ers, and his own strategy choice should yield him maximal expected utility with 
respect to these subjective probabilities.

There is, however, a difficulty with applying the notion of subjective probabil-
ity to strategic games. In games against nature, subjective probabilities are con-
structed from the decision maker’s preferences among gambles that “stake prizes” 
on nature’s possible choices. In strategic games, this translates to staking prizes on 

1 Related ideas appeared in Frank P. Ramsey (1931) and Bruno de Finetti (1937), and are taken up in Jacques 
H. Dreze (1961) and Frank J. Anscombe and Robert J. Aumann (1963).
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Assessing Strategic Risk†

By R. J. Aumann and J. H. Dreze*

In recent decades, subjective probabilities have been increasingly 
applied to an adversary’s choices in strategic games (SGs). In games 
against nature (GANs), the subjective probability of a state can be 
elicited from lotteries yielding utility 1 if that state obtains, 0 other­
wise. But in SGs, making such a lottery available changes the game, 
and so the players’ incentives. Here, we propose a definition of sub­
jective probabilities in SGs that uses actually available strategies 
only. The definition applies also to GANs where the decision mak­
er’s options are restricted. The probabilities that emerge need not be 
unique, but expected utilities are unique. (JEL D81)
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strategy choices of the adversary. But that may change the incentives of the players, 
and in particular, the propensity to play this or that strategy. This invalidates the 
whole process.

The crux of the difficulty is that games of strategy are delicate objects: any modi-
fication of the definition of a game, however innocuous at first sight, may change the 
nature of the game and the behavior of the players. Accordingly, we must take the 
game as given, also when analyzing a player’s preferences.

This paper starts from the premise that a player (the protagonist) has well-defined 
preferences over the outcomes of the game, over the pure strategies open to her, and 
over lotteries among these elements. We impose on these preferences consistency 
requirements identical to those used for games against nature. We show that these 
preferences imply existence of a utility function on the outcomes, and a probability 
distribution on the strategies of the other players, such that the preferences over lot-
teries (and hence over mixed strategies) are consistent with expected utility maxi-
mization. Though probabilities need not be unique (Section VB), expected utilities 
are unique.

In order to interpret that result, we show that it also obtains when analyzing a 
game against nature where the decision maker must choose one from a given set of 
acts,2 and preferences are elicited only for these acts, their consequences, and lotter-
ies among these elements.

Thus, expected utility maximization emerges under the same premises and with 
the same characterization in strategic games and in games against nature. In that 
sense, the dichotomy vanishes altogether.

Section I describes our framework informally. Section II sets forth our main 
result informally. Section III is devoted to mathematical preliminaries, Section IV 
to the formal statement of our result, Section V to discussion, Sections VI and VII to 
proofs, and Section VIII to the literature.

I.  A Common Framework

It will be useful to use the same terminology for games against nature (GANs) 
and for strategic games (SGs). In either case, the “adversary”—be it nature or an 
interested party or parties—has several alternatives, called strategies of the adver­
sary. The decision maker—henceforth protagonist—also has several alternatives, 
called strategies of the protagonist. Together, the strategies of the adversary and of 
the protagonist determine the outcome of the game. Thus, each of the protagonist’s 
strategies may be thought of as a function from the adversary’s strategies to the pos-
sible outcomes: an “act” in the terminology of Savage (1954), a “horse lottery” in 
that of Anscombe and Aumann (1963) (henceforth A-A).

A game (either GAN or SG) is thus defined by the set C 5 5c6 of outcomes (con-
sequences), the set R 5 5r6 of strategies available to the protagonist (acts), the set 

2 For instance, the acts defining a specific decision problem—like choosing an insurance policy, or a portfolio 
of assets, and so on.
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S 5 5s 6 of strategies available to the adversary (states), and3 an outcome function h, 
which associates a consequence h 1r, s 2 with each strategy pair 1r, s 2 .

Following standard practice in decision theory, we rely on the primitive concept 
of “preference.” Preferences are applied to outcomes c as well as to strategies r. To 
obtain cardinal preferences, we introduce lotteries, defined as objective probability 
distributions. A mixed consequence is a lottery on consequences, an element g of the 
set D 1C2 of lotteries on C. A mixed strategy is an element r of the set D 1R2 of lotter-
ies on R. In order to calibrate utilities for the elements of C and R to the same scale, 
we introduce hybrid lotteries, i.e., elements l of the set D 1R < C2 5: D.

Operationally, such a lottery l results either in (a) the outright selection of a speci-
fied pure outcome of the game, or in (b) the game being played, with the protagonist 
choosing a specified pure strategy. More specifically, alternative (b) results in award-
ing to the protagonist the outcome associated by the game with a specified strategy of 
the protagonist, combined with the strategy actually chosen by the adversary when 
playing the game. For each strategy s of the adversary, l yields a mixed consequence 
ls in a natural way: if l chose a consequence, then ls chooses the same consequence; 
and if l chose a pure strategy r, then ls chooses the outcome of the game when the 
protagonist chooses r and the adversary chooses s. Note that all mixed consequences 
are in D, as are all mixed strategies; thus the preferences on D apply also to mixed 
consequences and to mixed strategies.

If a hybrid lottery l results in the game G :5 1C, R, S, h 2 being played, the defini-
tion of G is fully respected, and it will be played as such, irrespective of what conse-
quence c may have been specified by l as a mutually exclusive alternative to G.

II.  Main Result

The following two assumptions are made:

N-M: The preference order satisfies the usual assumptions of von Neumann-
Morgenstern utility theory; and

Monotonicity: If one hybrid lottery l always yields a mixed consequence pre-
ferred to that yielded by another one l9, no matter what the adversary does, then l is 
preferred to l9; likewise for weak preference.4

We then have the following:

MAIN Theorem (verbal statement): There exists a function on the consequences—
unique up to positive linear transformations5—called a utility function, and a prob­
ability distribution p on the adversary’s strategies, such that

3 Throughout, terms being defined are italicized.
4 Preference or indifference.
5 Multiplication by a positive constant and addition of an arbitrary constant.



4	 American Economic Journal: Microeconomics� FEBRUARY 2009

	(i)	 one hybrid lottery is preferred to another if and only if its expected utility is 
greater; and

	(ii)	 the expected utility of a hybrid lottery is the same for all p satisfying (i).

Condition (i) says that the utility u and the probabilities p represent the prefer-
ences numerically. Condition (ii) says that though the subjective probabilities are not 
unique, they are “payoff equivalent,” in that for each of the alternatives available to 
the protagonist, all yield the same payoff. The theorem applies to games of strategy 
as well as to games against nature, through suitable interpretation of the common 
framework.

III.  Formal Treatment: Preliminaries

The set of all probability distributions6 on a finite set A is denoted D 1A2 . Note that 
if a, a9 [ D 1A2 and t [ 10, 12 , then also ta 1 11 2 t 2a9 [ D 1A2 . Abusing our nota-
tion, we write a and a interchangeably if a assigns probability 1 to a; that is, we do 
not distinguish between a and a lottery that chooses a with certainty. No confusion 
should result.

A preference order s, on D 1A2 is a transitive,7 reflexive,8 and complete9 binary 
relation on D 1A2 . If a s, b and b s, a, write a , b and say that a is indifferent to b. 
If a s, b and a / b, write a s b and say that a is preferred to b. An N-M utility for 
s, is a real-valued function u on D 1A2 such that

(1) 	 a s, a9 iff u 1a 2 $ u 1a92 , and

(2) 	 u 1ta 1 11 2 t 2a92 5 tu 1a 2 1 (1 2 t 2u 1a92 .

Various mutually equivalent axiom systems for N-M utility theory are available 
(John von Neumann and Oskar Morgenstern 1944, R. Duncan Luce and Howard 
Raiffa 1957, and others). We say that a preference order satisfies the axioms of von 
Neumann-Morgenstern utility theory—and call it an N-M preference order—if it 
satisfies any one of those systems.

Proposition A: An N-M preference order on D 1A2 has an N-M utility.

6 Nonnegative real-valued functions whose values sum to 1. 
7 a s
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IV.  Formal Treatment: The Main Theorem

The viewpoint taken here is that of a single player, the protagonist, also called 
Rowena; it is her10 subjective probabilities for the strategy choices of the other 
players that we will define. Also, the preferences appearing below are hers, as are 
the utilities. It is convenient to combine all the other players into a single one, called 
Colin; we will see that no loss of generality is involved.

A game G consists of

  •	 a finite set R with members r (Rowena’s pure strategies),
  •	 a finite set S with members s (Colin’s pure strategies),
  •	 a finite set C with members c (pure consequences), and
  •	 a function h : R 3 S S C (the outcome function).11

Members r, r9, … of D 1R2 are called mixed strategies of Rowena; members g, g9, … of 
D 1C2 are called mixed consequences; members l, l9, … of D 1R < C2 (henceforth 
simply D2 are called hybrid lotteries (or simply lotteries). If l [ D, set l 5 tr 1 
11 2 t 2g, where r [ D 1R2 , g [ D 1C2 , and t [  30, 14 . For each pure strategy s of Colin, 
let rs [ D 1C2 be the mixed consequence that results when Rowena plays r and Colin 
plays s, and let ls :5 trs 1 11 2 t 2g be the mixed consequence that results when 
Rowena uses the lottery l and Colin plays s. Call a preference order s, on D mono­
tonic if l s, l9 whenever ls s, l9s for all s, and l s l9 whenever ls s l9s for all s.

Now, let G 5 1R, S, C, h 2 be a game, s, a monotonic N-M preference order on D; 
so in particular, s,|D 1C2 is an N-M preference order on D 1C2 , so has an N-M utility 
u, unique up to positive linear transformations.

MAIN Theorem (formal statement): There exists a probability distribution p on 
S, such that for any hybrid lotteries l, l9,

(3)	 l s, l9 if and only if as[S psu 1ls 2 $ as[S psu 1l9s 2 ;

and, if p* is another such probability distribution, then for any hybrid lottery l,

(4)	 as[S psu 1ls 2 5 as[S p*
s u 1ls 2 .

For hybrid lotteries l, define

(5)	 u 1l 2 :5 as[S psu 1ls 2 ;

because of (4), this does not depend on p, so (3) becomes

10 The protagonist is female. The other players are of indeterminate gender; we refer to them as “he,” to dis-
tinguish them from the protagonist.

11 Without loss of generality, we could take C 5 R 3 S and let h be the identity; but nothing would be gained 
thereby, the notation would become more cumbersome, and the ideas less transparent. 
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(6)	 l s, l9 if and only if u 1l 2 $ u 1l92 .

In words, Rowena evaluates lotteries by their expected utility, which is uniquely 
defined on D (up to positive linear transformations).

Note that the Main Theorem applies to GANs as well as to SGs.

V.  Discussion

A. GANs and SGs

In a game against nature, nature is oblivious to the protagonist and her options; 
therefore, even if her options change, her probabilities for nature’s choices should 
not. In a strategic game, the adversary takes the protagonist’s options into account 
when choosing his strategy; therefore, if the protagonist’s options change, her prob-
abilities for the adversary’s choices may well change.

In GANs, the standard approach (Savage 1954, A-A 1963) to defining the protago-
nist’s probability for a particular state s of nature uses a strategy rs of the protagonist 
that yields her utility 1 if s occurs, 0 otherwise. Her probability for s is then defined 
as her utility u 1rs 2 for this strategy; in words, the number p such that she would as 
soon have a dollar with objective12 probability p as a dollar if nature chooses s. If rs 
is not available in the given GAN, just add it; as noted above, the protagonist’s prob-
ability for s should not be affected.

In SGs, this does not work, because adding rs to the protagonist’s options does 
affect her probabilities for s—again, as noted above.

The approach described in the preceding sections overcomes the difficulty by 
restricting attention to those strategies that are actually available to the protagonist 
in the given game; adding rs is forbidden. While the method was developed for SGs, 
formally it applies equally well to GANs; specifically, to GANs in which the set of 
strategies available to the protagonist is—for whatever reason—restricted. Thus the 
formal distinction between GANs and SGs vanishes completely.

But conceptually, an important distinction between the two does remain. In 
GANs, even when the protagonist’s strategies are in fact restricted, she can imagine 
the strategy rs, and so evaluate it. But in SGs, adding rs changes the adversary’s view 
of the game; therefore imagining rs cannot lead to a coherent definition13 of the pro-
tagonist’s subjective probabilities.

B. Nonuniqueness and Payoff Equivalence

The subjective probabilities in the Main Theorem need not be unique. A simple 
example is a two-person game whose matrix has two identical columns, in which 
case the total subjective probability assigned to both columns can be divided between 
them in an arbitrary way. They are, however, payoff equivalent, in the sense that for 

12 “Objective” probabilities are associated with coin tosses, roulette spins, and the like.
13 See the item entitled “Ignorance” in Section VD.
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a given utility function on the consequences, all subjective probability distributions 
satisfying the Main Theorem yield the same expected utility for each hybrid lottery. 
That is condition (4) in the formal statement of the Main Theorem.

Thus, consider a three-way election for president of a certain country, with can-
didates A, B, and C. If the protagonist must choose between getting utility 1 with 
certainty and a bet that yields utility 2 if A wins and 0 otherwise, then our procedure 
will uniquely determine only her probability pA for A winning. For the probabilities 
pB and pC that B or C will win, we can say only that they sum to 1 2 pA, but nothing 
about their individual values; this is the nonuniqueness. The payoff equivalence says 
that the individual values of pB and pC don’t matter to the protagonist when making 
her choice; she should choose the bet if and only if pA . 1/2.

C. Hybrid Lotteries

Hybrid lotteries may be interpreted as strategies in extensive games of a kind 
often seen in real life. Specifically, each hybrid lottery l may be seen as yielding a 
mixed strategy r with probability t, and a mixed outcome g with the complemen-
tary probability 1 2 t. Denote by Gl the extensive game in which nature chooses, 
with respective probabilities t and 1 2 t, whether G is to be played or whether the 
outcome is to be g; then the lottery l is equivalent (for the protagonist Rowena) to 
playing r in Gl. One would not expect the adversary Colin to play Gl differently14 
from G, so the protagonist’s preferences between the different lotteries l accurately 
reflect her estimate of how the adversary will play G.

Some readers have asked whether considering hybrid lotteries is like considering 
the original game to which one has added acts yielding Rowena a constant, inde-
pendent of Colin’s choice. The answer is no. Rowena cannot use constant acts that 
are not in R when playing the game; Colin knows this, and, indeed it is commonly 
known.

D. Some Dead Ends

“Admissible” Preferences.—One might have thought it sufficient to work with 
the space D 1C2  <  D 1R2 consisting only of mixed consequences and mixed strate-
gies, rather than the much larger space D 1C  <  R2 of hybrid lotteries. Preferences on 
D 1C2  <  D 1R2 induce preferences on each of D 1C2 and D 1R2 , and a “matching” of D 1C2 
with D 1R2 . Call the preferences on D 1C2  <  D 1R2 admissible if each of the induced 
preference orders is N-M, the one on D 1R2 is monotonic, and there is also monoto-
nicity as “between” D 1C2 and D 1R2 ; i.e., if Rowena (weakly) prefers a mixed conse-
quence g to all outcomes of a mixed strategy r, no matter what Colin does, then she 
(weakly) prefers g to r, and similarly in the opposite direction. In utility terms, we 
get N-M utility functions u on D 1C2 and D 1R2 that are calibrated to the same scale, 
so that it is meaningful to compare the utilities of mixed consequences and mixed 

14 For each player i, the matrix of Gl is obtained from that of G by multiplying the whole matrix by the con-
stant t and adding the constant 112t 2ui 1g 2 , where ui is i’s utility.
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strategies, and appropriate to use the same notation—u—for both. Admissibility is 
about all one can ask for without going to hybrid lotteries; but it is not enough to 
yield utilities and subjective probabilities representing the preferences. For example, 
consider Game 1 (see display), consequences c being denoted by their utilities u 1c 2 . 
Suppose u 1T 2 5 3 /4 and u 1B2 5 1/2. This induces an admissible preference order15 
on D 1C2  <  D 1R2 . If q were the subjective probability of Colin’s playing left, condi-
tion 152 in Section IV would yield 3 /4 5 u 1T2 5 q # 1 1 11 2 q 2 # 0 5 q, and 1/2  
5 u 1B2 5 q # 2/3 1 11 2 q 2 # 1/3, so q 5 1/2, a contradiction.

L R

T 1 0

B 2/3 1/3

                            Game 1

Separate Preferences on Strategies and Consequences.—Another potential 
option is to forgo the “matching” between D 1C2 and D 1R2 1which “drives” the above 
example), and to proceed from separate N-M preference orders on D 1C2 and D 1R2 , 
obeying monotonicity on D 1R2 . With this, one does get utilities and subjective prob-
abilities representing the preferences. Indeed, we have the following:

AUXILIARY Theorem: Let x2 and s, be N-M preference orders on D 1C2 and D 1R2 
respectively, with s, monotonic; i.e., l s, l9 whenever ls x2 l9s for all s, and l s l9 
whenever ls x l9s for all s. Then there exists a utility function u on D 1C2 , unique up 
to positive linear transformations, and a probability distribution p on S, such that 
for l, l9 in D 1R2 ,

	 l s, l9 if and only if as[S psu 1ls 2 $ as[S psu 1l9s 2 .

But here, payoff equivalence (the analogue of condition (4) in Section IV), is not 
guaranteed. Indeed, consider Game 2 (see display), where, as before, consequences 
are denoted by their utilities. The relation T s, B fully determines a preference order 
on D 1R2 , which is represented by p 5 1pL, pR2 5 1t, 1 2 t 2 for any t in the half-open 
interval 11/2, 14 . The corresponding utilities are u 1T2 5 t and u 1B2 5 1 2 t, which 
are of course different for different t.

15 Monotonicity on D 1R2 is vacuously fulfilled, since for mixed strategies r and r9, preferences between rL and 
r9L are opposite to those between rR and r9R. As between D 1C 2 and D 1R2 , let r :5 aT 1 11 2 a 2B [ D 1R2 . Then r 
~ 1/2 1 1/4a, which is always strictly between the consequences 2/3 1 1/3a and 1/3 2 1/3a that may result when 
r is played. Thus if g is $ each rs, then g $ 2/3 1 1/3a . 1/2 1 1/4a ~ r, and if each rs is $ g, then r ~ 1/2 1 
1/4a . 1/3 2 1/3a $ g. 
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L R

T 1 0

B 0 1

                               Game 2

The failure of payoff equivalence is a serious drawback, as the utilities of strate-
gies are not calibrated to the same scale as those of consequences; the protagonist 
has no clear idea of what using a particular strategy is worth to her. So if we are to 
keep the game unchanged, hybrid lotteries remain as the only satisfactory option for 
defining the protagonist’s subjective probabilities.

Side Bets.—The standard approach to defining the protagonist’s subjective prob-
abilities in games against nature relies on “side bets.” In such a bet she gets, in 
addition to her payoff from the game, an amount d if the adversary plays a specified 
strategy s; nothing else is changed. One then defines her probability for s as that 
number p such that she would as soon opt for the side bet, as for d with objective 
probability p.

In strategic games this doesn’t work because, as we said in the introduction, side 
bets may change the game. For example,16 in the coordination game G1 below, one 
may expect the Pareto dominant outcome BR. A side bet on L in the amount of d 5 8 
adds 8 to the row player’s payoffs in column L, i.e., transforms the game to G2. If 
side bets “don’t matter,” we should expect BR in G2 as well. By the same token, add-
ing 8 to the column player’s payoffs in row T of G2 should not matter; this yields G3, 
commonly known as the “Stag Hunt.”17 But here BR, which is Pareto dominated by 
TL, is far from compelling; indeed, John C. Harsanyi and Reinhard Selten (1987) 
select BR in G1 and TL in G3.

L R

T 9, 1 0, 0

B 8, 0 7, 7

        G2

L R

T 1, 1 0, 0

B 0, 0 7, 7

         G1

L R

T 9, 9 0, 8

B 8, 0 7, 7

         G3

Side bets leave most equilibrium notions—including that of Nash (1951) and cor-
related equilibrium (Aumann 1974)—invariant. Nevertheless, they subtly change 
incentives, as the example shows.

16 Communicated by Sergiu Hart. To avoid difficulties, assume dollar payoffs and linear utilities.
17 See Barry O’Neill (1994, 1004–5) for a discussion of this game and some of the literature on it.
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Ignorance.—As discussed in Section VA, in GANs the probability of a state s of 
nature is Rowena’s utility for a strategy rs yielding utility 1 if s occurs, 0 if not. In 
SGs this does not work because rs is usually unavailable to Rowena; adding it may 
change Colin’s view of the game, and so Rowena’s probability that he chooses s.

One might think it enough to imagine a situation in which rs really is available to 
Rowena, but Colin does not know that it is, so his choices—and Rowena’s probabili-
ties for his making those choices—are not affected. But that is not very satisfactory. 
What does Rowena think about Colin’s state of mind? If she considers it possible that 
he considers it possible that rs is available to her, then that already changes the game, 
and we have the same difficulty as before. If not, then she knows that he knows that 
it is unavailable. But then how can it be available? There is a basic incoherence in 
situations where something false is “known.”

Adding Dominated Strategies.—Though in SGs, adding rs may in general change 
Rowena’s probabilities for Colin’s choices, one might think that that is not so when rs 
is strictly dominated. If so, we could define Rowena’s probabilities as follows: with-
out loss of generality, take all of Rowena’s payoffs in the given game to be . 1; oth-
erwise, simply recalibrate the utility function. Now, for each strategy s of Colin, add 
the strategy rs of Rowena. She will not use this strategy, as it is strictly dominated; 
so for practical purposes, the game appears unchanged, and Rowena’s utility for rs 
should constitute an adequate definition of her probability that Colin chooses s.

But on closer examination, this, too, breaks down. To eliminate the possibility 
that Rowena will use a strictly dominated strategy, Colin must know that she is 
rational. So if adding rs is not to affect Rowena’s probabilities of Colin’s choices, 
she must know that he knows that she is rational. For this, we must assume at least  
second-order knowledge of rationality, which in a general theory of probability 
assessments in games is unacceptably strong.18

In fact, more than second-order knowledge of rationality is needed; nothing less 
than common knowledge of rationality will do. If Colin does not know that Rowena 
knows that he knows she is rational, then he might think that she thinks that he 
thinks she might use rs; in that case he would choose accordingly, so the game would 
be essentially affected after all. So he does have to know that, and she must know 
that he knows it. And so on.

E. The Utility of Playing a Game

The utility of playing a game for the protagonist is naturally defined as the utility 
of her most preferred strategy. That this is well-defined is a consequence of payoff 
equivalence; for example, if one uses only the Auxiliary Theorem, then one does not 
get a utility for playing the game.

We purposely use the term “utility”—rather than value—since in game theory 
“value” means something else. For example, the value of tic-tac-toe is a draw, 
whereas the utility of playing a round of the game could be, say, a win, depending 

18 For example, it is not assumed in Aumann and Adam M. Brandenburger (1995).
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on how the protagonist assesses the situation. In brief, one might say that the utility 
is an expectation, whereas the value is a rational expectation; for further discussion, 
see Aumann and Dreze (2008, section VIIC).

F. Beliefs about Beliefs

The method described here yields the protagonist’s probability assessments of 
what the adversary will do, but not of what he believes. Belief systems (or hierar-
chies), which embody players’ probability assessments of each other’s probability 
assessments, have played a central role in game theory for over forty years, ever 
since the pioneering work of Harsanyi (1967–68). The current work does not enable 
construction of such systems from preferences.

VI.  Affine Monotonic Functions

For points x, y in Rn, write x W y if xi . yi for all i, and write x $ y if xi $ yi for 
all i. A real-valued function19 f from a convex set D in Rn to R is called affine if 
f 1tx 1 11 2 t 2y 2 5 tf 1x 2 1 11 2 t 2 f 1y 2 for all x, y in D and t in 10, 12 . It is called 
monotonic if x W y implies f 1x 2 . f 1y 2 , and x $ y implies f 1x 2 $ f 1y 2 , for all x, y 
in D.

Proposition B: Let D be a convex subset of Rn, and g an affine monotonic  
real-valued function on D. Then there exist nonnegative q1, … , qn , not all of which 
vanish, and a real q0 , such that g 1x 2 5 q0 1 Än

i51qi xi  for all x in D.

In this section, we prove Proposition B. Readers willing to accept the proposition 
on faith may proceed to the proof of the main results in the next section.

The origin 10, … , 02 of Rn is denoted 0. A linear subspace (or simply subspace) 
L of Rn is a subset of Rn that, together with any two points x, y in it, and any real 
number t, contains x 1 y and tx. A function f on L is linear if f 1x 1 y 2 5 f 1x 2 1 f 1y 2 
and f 1tx 2 5 tf 1x 2 for all x, y in L and all real t. Note that a function on L is linear if 
and only if it is affine. If f is a linear function on L, and t is a constant, then the set 
5x [ L : f 1x 2 $ t6 is a (closed) half-space of L, and the set 5x [ L : f 1x 2 5 t6 is a 
hyperplane in L; the hyperplane separates two convex subsets D and D9 of L if f 1x 2 
$ t for all x in D and f 1x 2 # t for all x in D9. A polyhedral convex set is the intersec-
tion of half-spaces. A linear manifold is a hyperplane in some subspace of Rn. The 
relative interior of a convex set D in Rn, denoted ri 1D2 , is its interior relative to the 
smallest linear manifold containing it.

Lemma 1: Let D and D9 be nonempty convex sets in Rn, with D polyhedral. Then 
a necessary and sufficient condition for the existence of a hyperplane that separates 
D from D9 and does not include D9 is that D does not meet ri 1D92 .

19 To avoid trivialities, we assume in the sequel that sets are not singletons and functions are not constant.
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Proof: 
R. Tyrrell Rockafellar (1970, Theorem 20.2).

Lemma 2: Any monotonic linear function g on a subspace L of  Rn may be extended 
to a monotonic linear function on all of Rn.

Proof: 
Define Rn

1 : 5 5x [ Rn : x $ 06, and L_ : 5 5x [ L : g 1x 2 # 06. Then ri 1L_2 
5 5x [ L : g 1x 2 , 06; since g is monotonic, R n

1 does not meet ri 1L_2 . As R n
1 is poly-

hedral, by Lemma 1 there is a hyperplane H in Rn that separates R n
1 from L_ and 

does not include L_; choose the linear function f on Rn defining H to be nonnegative 
on R n

1, nonpositive on L_. We claim that for each x in L,

(7)	 g 1x 2 5 0 if and only if f 1x 2 5 0.

To see this, suppose first that g 1x 2 5 0; then x [ L_, so f 1x 2 # 0. Also g 12x 2 
5 2g 1x 2 5 0, so 2x [ L_, so f 12x 2 # 0, so f 1x 2 $ 0, so f 1x 2 5 0. In the opposite 
direction, let f 1x 2 5 0, and suppose that g 1x 2 Z 0. Then for any y in L, we have 
g 1y 2 1g 1y 2/g 1x 2 2x 2 5 0, so f 1y 2 1g 1y 2/g 1x 2 2x 2 5 0, so f 1y 2 5 1g 1y 2/g 1x 2 2 f 1x 2 5 0. 
So H includes all of L, and in particular L_, contrary to what we stipulated; so (7) 
is proved. Since f is nonpositive on L_, it follows that f and g always have the same 
sign.

Now, choose an x in L with g 1x 2 Z 0. Possibly redefining f by multiplica-
tion by a positive constant, we may take f 1x 2 5 g 1x 2 . If y is any member of L, 
then f 1y 2 1  f 1y 2/f 1x 2 2x 2 5 f 1y 2 2 f 1y 2 5 0, so g 1y 2 1f 1y 2/f 1x 2 2x 2 5 0, so g 1y 2 
5 f 1y 2g 1x 2/f 1x 2 5 f 1y 2 . So f extends g; and it is monotonic, as it is nonnegative on 
R n

1 and is not constant.

Proof of Proposition B: 
By possibly applying a translation, we may suppose without loss of generality that 

0 [ ri 1D2 . Let L be the smallest linear manifold that includes D. Since L contains 
0, it is a linear space, and there is a unique extension of g to a linear function g9 on 
L; as g is monotonic, so is g9. Applying Lemma 2, we obtain an extension f of g9 
from L to a linear monotonic function on all of Rn. Let f 1x 2 5 Ä n

i51 qi xi for all x 
in Rn; all linear functions on Rn have this form. The qi cannot all vanish, for then 
f would be constant; and they are nonnegative, as f is monotonic. This proves20 the 
proposition.

VII.  Proofs of the Theorems

The idea is to think of the N-M expected utility of a lottery l as an affine mono-
tonic function of the S-vector u 1lS2 of the utilities u 1ls 2 (Rowena’s utility if Colin 
plays s 2 , and then to apply Proposition B. Subtracting the additive constant q0, and 

20 The term q0 is due to the translation at the beginning of the proof.
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then multiplying by a positive constant so that the other coefficients sum to 1, con-
stitutes a positive linear transformation; so the result still represents Rowena’s pref-
erences, and we can think of the coefficients as Rowena’s probabilities for Colin’s 
strategies. When the vectors u 1lS2 span the Euclidean space in which they live, then 
Proposition B follows from every linear monotonic function on Rn having the form 
Ä n

i51 qi xi, with qi $ 0. When they do not span, one applies Lemma 2, which may be 
of some independent interest; it is not quite straightforward, and we have not found 
it in the literature.

For the formal proofs, please refer to the formal treatment in Section IV. Set 
S :5 5s1, … , sn6. With each lottery l in D, associate the point u 1lS2 :5 1u 1ls1

2 , … , u 1lsn
2 2 

in Rn. Let D be the set of all the points u 1lS2 when l ranges over D; by (2), D is 
convex. Let w be an N-M utility function for s,, and define f on D by f 1x 2 :5 w 1l 2 
for any l for which u 1lS2 5 x. That there is such a l follows from x [ D; and by the 
monotonicity of s,, (1), and (2), f is well-defined as a function of x, and is affine and 
monotonic. So we may apply Proposition B; by multiplying w by a positive constant, 
we may take the qi to be nonnegative and sum to 1. Then setting psi

 :5 qi yields (3).
The proof of the Auxiliary Theorem is the same, except that D ( 5 D 1R < C2 2 is 

replaced by D 1R2 , and u is a utility function for x2.
To prove the payoff equivalence (4), set up 1l 2 :5 Ä s[S psu 1ls 2 for all hybrid lotter-

ies l. Suppose that p and p* satisfy (3), and let l be a hybrid lottery. Preference-wise, 
l must be between the most preferred and the least preferred consequence; so there 
is a mixed consequence r with l , r. Then (3) yields up 1l 2 5 up 1r 2 5 u 1r 25 up* 1r 2 
5 up* 1l 2 , which is (4).

VIII.  Literature

Luce and Raiffa (1957, 306) were among the earliest21 to suggest assigning subjec-
tive probabilities to an adversary’s choices in a strategic game; they wrote as follows: 
“The problem of individual decision making under uncertainty can be considered a 
one-person game against a neutral nature. Some of these ideas can be applied indi-
rectly to individual decision making … where the adversary is not neutral but a true 
adversary. … One modus operandi for the decision maker is to generate an a pri­
ori probability distribution over the … pure strategies … of his adversary by taking 
into account both the strategic aspects of the game and … ‘psychological’ informa-
tion … about his adversary, and to choose an act which is best against this … distri-
bution.” They go on to explore the idea of “side bets” (see the item entitled “Side 
Bets” in Section VD above), noting some difficulties with it, and informally suggest-
ing a possible way around them. No formal model was developed, and no definite 
conclusion reached.

In the unpublished dissertation of Dreze (1958, 16), one reads “… it is always 
possible to formalize the decision problem facing a player in a game of strategy as 
a game against nature, where states of nature are described with reference to the 

21 They cite an earlier paper by Joseph L. Hodges, Jr., and Erich L. Lehmann (1952) who suggest that a player 
in a two-person zero-sum game might assign subjective probabilities to the eventuality that his adversary will 
make a “mistake.” But this is not really in the spirit of this paper, nor of Luce and Raiffa’s suggestion.
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opponent’s strategies. The usefulness of the theory of games of strategy resides in 
the fact that it helps the player to estimate the probabilities of the various states of 
nature so defined.”

It appears that Walter Armbruster and Werner Böge (1979) and Böge and Theo 
Eisele (1979) were the first to construct formal models in which each player directly22 
assigns subjective probabilities to the strategy choices of the others. A relatively early 
application of this idea is Brandenburger and Eddie Dekel (1987). The representation 
of the value of a game to a player as a subjectively expected utility is implicit in the 
work of Robert F. Nau and Kevin F. McCardle (1990).

Joseph B. Kadane and Patrick D. Larkey (1982) wrote that the problem of a player 
in a game is no different from any other one-person decision problem. In particu-
lar, they suggested abandoning altogether all notions of equilibrium. Instead, they 
proposed simply that each player form, in some unspecified and unrestricted way, a 
probability distribution over the other players’ strategies, and then maximize against 
that. To form the probabilities, they suggested using disciplines like cognitive psy-
chology rather than decision or game theory.

In the precisely opposite direction, Marco Mariotti (1995, 1108) wrote that “a 
divorce is required between game theory and individual decision theory … strate-
gic decision principles may be radically different from individual decision-theoretic 
principles.”

Game G (see display) is an extensive game: if Rowena chooses T, then G9 is 
played; otherwise, both players get 2. Mariotti argues that in G, a prudent Rowena 
might well play B, which assures her 2, whereas if she plays T, she might get only 
1—her payoff at a reasonable outcome of G9 (the Pareto undominated strict Nash 
equilibrium 1T9, L92). Then she would also play B in GG9, which is simply the strate-
gic form of G. But in GG9, we may first eliminate TT9, by strong domination; then L9, 
by weak domination,23 and then B, as 3 . 2.

The perspective of the current work resolves the difficulty. In the abstract, 1T9, L92 
indeed cannot be ruled out in G9. But if Rowena chose T in G, it’s unlikely that she 
would choose T9 in G9; presumably Colin realizes this, and Rowena realizes that he 

22 Previously, Aumann (1974) had already used subjective probability in analyzing games; but in that analysis, 
players use “subjectively mixed strategies”—peg their pure strategy choices on events (like outcomes of horse 
races) whose probability is not agreed upon—rather than simply assigning a subjective probability to the other 
players’ choices.

23 Mariotti uses a slightly different argument for this, but it comes to the same thing.

L9 R9

T9 1, 7 0, 0

B9 0, 0 3, 3
T G9

B 2, 2

L9 R9

TT9 1, 7 0, 0

TB9 0, 0 3, 3

B 2, 2 2, 2

	          Game G	      Game G9	     Game GG9	  
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does, so she is likely to assign a high probability to L9. When Rowena plays T in G, 
she’s not merely deciding to play G9; she’s deciding to play G9 in a situation where 
she could have gotten 2 for sure. That’s an altogether different kettle of fish.

Some of the ideas underlying the current work appear already in Mariotti’s stimu-
lating paper. Inter alia, that a strategy in a game corresponds to an act in Savage’s 
one-person decision theory; that “only some acts (strategies) are feasible for each 
player in a given game,” and that the players should “rank only the strategies avail-
able in that game” (p. 1102).

Finally, Dreze (2005) proposes defining subjective probabilities in strategic games 
by using only the protagonist’s “revealed” preference for the strategy she actually 
chooses over other strategies available to her.
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